Abstract
Optimized Yb-filled Fe-substituted skutterudites Yb0.6FexCo4−xSb12 (x = 0, 0.5, and 1.0) were synthesized using a high-pressure technique. The samples were characterized by powder X-ray diffraction (XRD) analysis and electron probe microanalysis (EPMA). The thermoelectric transport properties of the samples such as Seebeck coefficient, electrical conductivity, carrier concentration, and thermal conductivity were studied in the temperature range of 2–300 K. With 1/8 Fe substitution for the Co site (x = 0.5), the Seebeck coefficient and thermal conductivity were obviously optimized. Carrier concentration analysis indicates that proper Fe substitution can effectively compensate for the excess electrons and optimize the electric transport properties. The reduction in the total thermal conductivity κ could be mainly caused by the reduction in electron contribution to κ. Compared with an only-Yb-filled compound, a 26% improved figure of merit ZT was achieved at 300 K at the Fe substitution ratio x = 0.5 (ZT = 0.11). This result confirms that Fe substitution on the Co site is an effective approach to tuning and optimizing the thermoelectric properties of CoSb3-based skutterudites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.