Abstract

The rate of heat transfer by thermal radiation is a function of the number of channels that carry the electromagnetic energy, and the capacity of each channel to convey the electromagnetic energy. In this research, we show that we can increase the number of these channels for a given emitter volume, and accordingly, we can enhance both near- and far-field thermal radiation exchange. We increase the number of channels by carving a variety of slots with different sizes. Using a modified finite-difference time-domain simulation, we show that the interweaved L slots achieved higher rates of heat transfer than the flat slab and straight slots (all having the same volume) by 15 and 2.5 times, respectively, for far-field thermal radiation (separation gap dc = 30 μm), and 5.6730 and 1.145 times for near-field thermal radiation (dc = 0.5 μm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.