Abstract
ABSTRACTIt is important to achieve materials with large coefficient of thermal expansion in science and engineering applications. In this paper, we propose an experimentally-validated metamaterial approach to amplify the thermal expansion of materials based on the guiding principles of flexible hinges and displacement amplification mechanism. The thermal expansion property of the designed metamaterial is demonstrated by simulation and experiment with a temperature increase of 245 K for the two-dimensional sample. Both experimental and simulation results display amplified thermal expansion property of the metamaterial. The effective coefficient of thermal expansion of the metamaterials is demonstrated to be dependent on the size parameters of the structure, which means by appropriately tailoring these parameters, the thermal expansion of materials could be amplified with different amplification factor. This work provides an important method to control the thermal expansion coefficient of materials and could be applied in various industry domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.