Abstract

Multi-view subspace clustering (MSC), assuming the multi-view data are generated from a latent subspace, has attracted considerable attention in multi-view clustering. To recover the underlying subspace structure, a successful approach adopted recently is subspace clustering based on tensor nuclear norm (TNN). But there are some limitations to this approach that the existing TNN-based methods usually fail to exploit the intrinsic cluster structure and high-order correlations well, which leads to limited clustering performance. To address this problem, the main purpose of this paper is to propose a novel tensor low-rank representation (TLRR) learning method to perform multi-view clustering. First, we construct a 3rd-order tensor by organizing the features from all views, and then use the t-product in the tensor space to obtain the self-representation tensor of the tensorial data. Second, we use the ℓ1,2 norm to constrain the self-representation tensor to make it capture the class-specificity distribution, that is important for depicting the intrinsic cluster structure. And simultaneously, we rotate the self-representation tensor, and use the tensor singular value decomposition-based weighted TNN as a tighter tensor rank approximation to constrain the rotated tensor. For the challenged mathematical optimization problem, we present an effective optimization algorithm with a theoretical convergence guarantee and relatively low computation complexity. The constructed convergent sequence to the Karush–Kuhn–Tucker (KKT) critical point solution is mathematically validated in detail. We perform extensive experiments on four datasets and demonstrate that TLRR outperforms state-of-the-art multi-view subspace clustering methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call