Abstract

High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.

Highlights

  • High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease

  • We were interested in the impacts on the endoplasmic reticulum (ER) membrane because the ER constitutes more than half of total membrane content in hepatocytes and smooth ER is the major site of cellular PL biosynthesis [35, 36]

  • ER stress has been previously identified as a key mediator in the lipoapoptosis of Chinese hamster ovary (CHO) and hepatic cells

Read more

Summary

Introduction

High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Diacylglycerols (DAGs) show incorporation of PA and further conversion preferentially into membrane PLs as opposed to TAGs. The resulting changes in PL acyl chain composition are associated with an increase in markers of ER stress and characteristic indicators of lipotoxicity (mitochondrial dysfunction, caspase activation, and cell death).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.