Abstract
An enhanced surrogate assisted framework, based on Probability of Improvement (PI) method, is proposed in this paper. We made some modifications to the original PI approach to enhance the performance of the modeling and optimization framework, leading to fewer rigorous simulations to find the optimal solution without loss of accuracy. We also extended the algorithm for handling general constraints using a fully probabilistic approach. The behavior of the proposed framework was investigated through a set of 9 Unconstrained Test Functions (UTF), 7 Constrained Optimization Problems (COP) and 3 Chemical Engineering Problems (CEP). The numerical results indicate that a lower number of rigorous model simulations were needed for optimizing UTF compared to the classic PI method and that the proposed framework was capable of achieving sustained near optimal solutions for COP and CEP. These results indicate that the proposed framework is suitable for solving computationally expensive constrained black-box optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.