Abstract

In this work, Ge2Sb2Te5 (GST) thin films are irradiated by a 1064 nm pulsed laser heat treatment system with different beam profiles. The surface effects induced by different laser conditions are studied systematically by atomic force microscope, spectroscopic ellipsometry, and Raman spectroscopy. It is found that a top-hat beam profile with uniform intensity distribution demonstrates the advantages of a non-destructive and homogeneous surface, which is critical for large-scale processing uniformity. The threshold laser fluence for the amorphization process is predicted by simulation and further proved by the laser irradiation experiment to be 27.9 mJ/cm2 at 1 ns pulse width. We further show that modulation of complex refractive indices of GST thin films can be achieved with different duty ratios (spatial ratio of amorphization part) from 0% to 100%. Our approach paves the way for the precise control of the optical properties of PCMs in emerging optical applications such as photonic switches, optical memories, and all-optical neural networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call