Abstract
Owing to the urgency of energy demand, an enhanced supervisory control scheme (ESCS) is proposed for hybrid microgrids (HMGs) integrating AC and DC grids. This system optimizes energy management within a virtual power plant (VPP) setup, facilitating smart charging stations for electric vehicles (EVs) and enabling vehicle-to-grid (V2G) and grid-to-vehicle (G2V) interactions. The proposed ESCS combines three sub-controllers: a sliding mode approach-based maximum power algorithm (SMA-MPA), active current detection technique (ACDT), and state of charge (SOC) regulation scheme. In this proposed approach, the SMA-MPA method is employed to extract maximum power with necessary stability confirmation. Moreover, ACDT is utilized to mitigate harmonics from nonlinear loads through the DC-AC inverter, thereby improving power quality (PQ). To enhance SOC regulation of the VPP, a detailed flow chart of appropriate converting mode selection associated with SOC controller design is proposed for smoother operation and improved dynamics. The coordination between sub-controllers is achieved by analyzing power demand and supply, DC-link voltage conditions, and SOC states of the VPP. The proposed ESCS approach enhances PQ even during PV shutdown conditions. Through software simulations and real-time Hardware-in-the-Loop (HIL-402) validation, the ESCS's superior power management, PQ, and regulatory compliance are demonstrated against conventional PQ methods. The findings exhibit excellent power management, improved PQ, and better voltage/frequency regulation in accordance with prescribed international IEEE 519 standards.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have