Abstract
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems. The search for refrigeration materials displaying a unique combination of pronounced caloric effect, low hysteresis, and high reversibility on phase transformation was very active in recent years. Here, we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment, with very low stress hysteresis (6.3 MPa) under a large applied strain (5%). Large adiabatic temperature changes (ΔT max = 16.3 K at ε = 5%) and moderate COPmater values (maximum COPmater = 11.8 at ε = 2%) were achieved. The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.