Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is of great interest as a promising metal-free electrode material for future electronic devices. Several printing techniques have been developed to generate PEDOT:PSS patterns. In this study, we introduced a silicon-based hardener into PEDOT:PSS composites to prepare conductive ink for the purpose of fabricating solvent-resistant PEDOT:PSS composite patterns. Electrohydrodynamic (EHD) jet printing enabled the direct patterning of PEDOT:PSS and hardener composites that exhibited improved electrical conductivity and solvent resistance, which are advantageous properties for efficient charge injection when semiconductor materials are coated onto pre-deposited PEDOT:PSS composite electrodes. By using EHD jet printed PEDOT:PSS composites as source and drain electrodes, bottom-gate-bottom-contact organic thin-film transistors (OTFTs) were fabricated. The resulting OTFTs with PEDOT:PSS and hardener composite electrodes exhibited superior electrical performance compared to OTFTs with electrodes without hardener. Finally, OTFTs with both EHD jet printed electrodes and semiconductors were fabricated and analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call