Abstract

Abstract An electrohydrodynamic (EHD) jet printing technique was used for direct printing of a conductive polymer combined with carbon nanotubes (CNT). The solutions mixture of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and carbon nanotubes (CNTs) wrapped with PSS served as a PEDOT:PSS/CNT composite ink for the EHD jet printing. The EHD jet-printed patterns of the PEDOT:PSS/CNT composite exhibited excellent dimensional stability and provided sub-10-micrometer channel lengths suitable for highly integrated organic thin-film transistors (OTFTs). The resulting pentacene OTFTs employing the channel length of 7 μm yielded the field-effect mobility of 0.03 ± 0.01 cm2/(V s). In addition, we investigated the electronic structure and the crystalline morphology at the interface between pentacene and the PEDOT:PSS/CNT composite electrode, as well as the contact resistance of the OTFTs by varying the channel length produced by the EHD jet printing process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call