Abstract
Human action recognition based on skeletons has wide applications in human–computer interaction and intelligent surveillance. However, view variations and noisy data bring challenges to this task. What’s more, it remains a problem to effectively represent spatio-temporal skeleton sequences. To solve these problems in one goal, this work presents an enhanced skeleton visualization method for view invariant human action recognition. Our method consists of three stages. First, a sequence-based view invariant transform is developed to eliminate the effect of view variations on spatio-temporal locations of skeleton joints. Second, the transformed skeletons are visualized as a series of color images, which implicitly encode the spatio-temporal information of skeleton joints. Furthermore, visual and motion enhancement methods are applied on color images to enhance their local patterns. Third, a convolutional neural networks-based model is adopted to extract robust and discriminative features from color images. The final action class scores are generated by decision level fusion of deep features. Extensive experiments on four challenging datasets consistently demonstrate the superiority of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.