Abstract

View-invariant human action recognition is a challenging research topic in computer vision. Hidden Markov Models(HMM) and their extensions have been widely used for view-invariant action recognition. However those methods are usually according to a large parameter space, requiring amounts of training data and with low classification accuracies for real application. A novel graphical structure based on HMM with multi-view transition is proposed to model the human action with viewpoint changing. The model consists of multiple sub action models, which correspond to the traditional HMM utilized to model the human action in a particular rotation viewpoint space. In the training process, the novel model can be built by connecting the sub action models between adjacent viewpoint spaces. In the recognition process, action with unknown viewpoint is recognized by using improved forward algorithm. The proposed model can not only simplify the model training process by decomposing the parameter space into multiple sub-spaces, but also improve the performance the algorithm by constraining the possible viewpoint changing. Experiment results on IXMAS dataset demonstrated that the proposed model obtains better performance than other recent view-invariant action recognition method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.