Abstract

The formation of highly ordered patterns of block copolymers (BCPs) with high χ is important for next-generation lithography applications. We demonstrate here a surface-engineering methodology to enhance the self-assembly of poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) BCPs with high χ by employing a hydroxyl-terminated polystyrene (PS-OH) brush. By precisely controlling the molecular weight (MW) and weight percent of PS-OH, well-ordered sub-20-nm BCP patterns were obtained over a large area in a short annealing time (<10 min) with the use of guiding templates. We systemically analyzed how the PS-OH brush affects the self-assembly kinetics of BCPs with various MWs and volume fractions. Moreover, the transmission electron microscopy (TEM) results strongly support that the PS-modulated surface plays an important role in the ordering of BCP patterns. We also achieved well-aligned 12 nm line and 18 nm dot patterns within 3 min by means of binary solvent vapor annealing at a moderate temperature under the optimum PS-OH brush conditions. These results provide a new platform for effective engineering and manipulation of the self-assembly of other BCPs for advanced BCP nanotechnologies. A facile and practical surface-engineering methodology to enhance the self-assembly of PS-b-PDMS BCPs with high χ by precisely controlling the molecular weight and weight percent of PS brushes. Highly ordered sub-20-nm BCP patterns were successfully obtained in a few minutes under the optimum PS brush condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.