Abstract

We present an effective design of aperiodically stacked layers of nonlinear material and air, sandwiched by two truncated photonic crystals, in terms of the simulation annealing method. The constructed structure can achieve multiple-wavelength second-harmonic generation (SHG) at the preassigned wavelengths. We derive a general solution of SHG in 1D inhomogeneous systems and apply it to evaluate the SHG conversion efficiency. Numerical simulations show that the conversion efficiency of SHG can be significantly enhanced when the fundamental wave frequencies are assigned to the designed defect states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.