Abstract

Monitoring suspended sediment concentration (SSC) in rivers is pivotal for water quality management and sustainable river ecosystem development. However, achieving continuous and precise SSC monitoring is fraught with challenges, including low automation, lengthy measurement processes, and high cost. This study proposes an innovative approach for SSC identification in rivers using multimodal data fusion. We developed a robust model by harnessing colour features from video images, motion characteristics from the Lucas–Kanade (LK) optical flow method, and temperature data. By integrating ResNet with a mixed density network (MDN), our method fused the image and optical flow fields, and temperature data to enhance accuracy and reliability. Validated at a hydropower station in the Xinjiang Uygur Autonomous Region, China, the results demonstrated that while the image field alone offers a baseline level of SSC identification, it experiences local errors under specific conditions. The incorporation of optical flow and water temperature information enhanced model robustness, particularly when coupling the image and optical flow fields, yielding a Nash–Sutcliffe efficiency (NSE) of 0.91. Further enhancement was observed with the combined use of all three data types, attaining an NSE of 0.93. This integrated approach offers a more accurate SSC identification solution, enabling non-contact, low-cost measurements, facilitating remote online monitoring, and supporting water resource management and river water–sediment element monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.