Abstract

The accuracy of the channel state information is important for correct channel estimation. However, when conducting channel estimation, more resources are allocated to pilots for estimation compared to data transmission. Furthermore, when the number of users increases, the number of pilots for estimation increases. Subsequently, there is an increase in the transmission overhead and hence reduces the spectral efficiency. Therefore, the advantage of obtaining channel state information is significantly reduced. To improve the performance of massive MIMO systems, the study analyses the tradeoff between the number of resources required to correctly estimate the channel using pilots to avoid interference while maintaining optimum spectral efficiency in massive MIMO antennas. Therefore, this study proposes an algorithm to address the challenge of optimum resource allocation in a massive MIMO. Pilot Frequency reuse, max–min fairness algorithm, and Zadoff–Chu sequences were adopted to achieve optimal allocation of resources and reduce interference for users in different cells using the same frequencies. The results reveal improved performance in terms of spectral efficiency with the adoption of the resource optimization approach. The study contributes to the performance improvement of massive MIMO antennas for 5 G communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call