Abstract
AbstractEven though BiFeO3–BaTiO3 (BF–BT) with high Curie temperature and excellent piezoelectric properties is very suitable for high‐temperature applications, its rapid reduction in resistivity with temperature limits its further application. So far, there is no effective method to improve the resistivity of BF–BT at a high‐temperature state. In this work, hot‐press sintering combined with an oxygen atmosphere was used to prepare (1 − x)BF–xBT (x = 0.2–0.33) ceramics for the first time, which reduced the sintering temperature from 1000 to 920°C. The controllable grain size can be achieved by adjusting the sintering temperature and the applied pressure. The X‐ray photoelectron spectroscopy results confirmed that using hot‐press sintering effectively avoided the generation of heterovalent Fe ions, and the resistivity of BF–BT ceramics at the high‐temperature stage was improved by two orders of magnitude. It was found that hot‐press sintering can cause the oriented growth of the sample along the (1 1 0) direction, and further refined X‐ray diffraction was used to accurately analyze the changes in the lattice structure. The hot‐press sintered samples obtained larger polarization strength, especially the electro‐induced strain showed excellent temperature stability in the wide temperature range of 30–170°C. Hot‐pressing sintering combined with an oxygen atmosphere is more suitable for preparing high insulation and electrical breakdown resistance ceramics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.