Abstract

Finding high performance plasma-facing materials (PFMs) is one of the most important and challenging tasks for realizing the commercial application of fusion reactors. Herein, we found the CrMoTaWV high entropy alloy (HEA) is highly resistant to low-energy and high-flux He plasma exposure. The nanochannel HEA film has 20 times higher initial fluence for the formation of fuzz and a remarkable 8.9 times slower fuzz growth rate than those of W. Combining the in-situ TEM observation and the Molecular dynamics (MD) simulation of the He bubble growth process, a new mechanism for the enhanced radiation resistance in HEA with the unusual interaction between HEA and He is found, where, differing from traditional metal, bubble growth in HEA leads to non-directional emission of interstitial atoms while HEA greatly suppress the growth of He bubbles. The special nanochannel structure further rise the radiation resistance through releasing He out of the HEA film and reducing the He concentration. This new nanochannel refractory HEA material presents a promising choice as the PFMs with excellent performance and a much longer serving lifetime for future commercial fusion reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.