Abstract

Five novel thionin genes have been isolated from three Brassicaceae species, Brassica oleracea var. acephala, Nasturtium officinale, and Barbarea vulgaris. Comparison of the deduced amino acid sequences shows that these thionin proteins share seven highly conserved cysteine residues. These five thionin genes were, respectively, inserted between cauliflower mosaic virus 35S promoter and nopaline synthase terminator in a binary vector pEKH2. Transgenic potato plants were generated through Agrobacterium-mediated transformation methods. Southern blot analysis of transgenic potato plants indicated successful integration with varying copy number of the thionin genes into the plant genomes. Expressions of thionin transgenes in the transgenic plants were confirmed by RT-PCR and their protein products were immunologically detected by western blot analyses. Antifungal assay using detached leaves from transgenic lines expressing either of the thionin genes showed similar levels of enhanced resistance to Botrytis cinerea as compared to those of non-transformed control plants. Novel thionin genes isolated in this study are probably useful tools to produce transgenic plants resistant to various phytopathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.