Abstract
Iron-carbon (Fe-C) microelectrolysis has attracted considerable attention in wastewater treatment due to its excellent ability to remove contaminants. Herein, novel Fe-C granules were synthesized by simple calcination method for removing organic contaminations, and a cost-effective and environmentally friendly method, namely pre-magnetization, was used to improve the micro-electrolysis performance of Fe-C. Batch experiments proved that premagnetized iron-carbon (pre-Fe-C) could significantly improve the removal of methyl orange (MO) at different Fe-C mass ratios (1:2-2:1), material dosages (1.0-2.5g/L), initial pH values (3.0-5.0), and MO concentrations (10.0-50.0mg/L). Electrochemical analysis showed that premagnetization could increase the current density and reduce the charge transfer resistance of the microelectrolysis system, making Fe-C more susceptible to electrochemical corrosion. Characterizations confirmed that the corrosion products of the materials included FeO, Fe2O3, and Fe3O4, and more corrosion products were formed in the pre-Fe-C system. Radical quenching experiments and electron spin resonance spectroscopy verified that •OH, 1O2, and O2-• were all involved in pollutant removal, and premagnetization could promote the generation of more reactive oxygen species. Overall, the pre-Fe-C process could effectively remove various organic pollutants, exhibit good adaptability to complex water environments, and hold potential for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.