Abstract

Hydrochar is an environmentally friendly and cheap adsorbent, but its adsorption amounts for anions is very limited. The functionalized hydrochar can overcome this shortcoming. Herein, polyethyleneimine-modified hydrochar (PEI-HC) was synthesized from hydrothermal carbonization (HTC) of methyl acrylate and bamboo after addition of initiator ammonium persulfate, and then modified by polyethyleneimine (PEI), which was used to treat Cr(VI). PEI-HC was tested by XANES, EXAFS, SEM-EDS, XPS, FTIR, N2 sorption isotherms, zeta potential, and elemental analyses. The characterizations showed that PEI was successfully grafted onto hydrochar, and the PEI-HC was rich in N and O functional groups, which presented high Cr(VI) sorption ability (528.41 mg·g-1 at pH 2). The bath experiments found the pseudo-second-order kinetic and Freundlich equations can well describe the adsorption kinetics and isotherm of the Cr(VI) adsorption onto PEI-HC, respectively. Electrostatic interaction, reduction, complexation, and H-bonding are the main removal mechanisms as supported by XANES, EXAFS, XPS, and FTIR. This study provides a strategy of combining HTC and free radical graft polymerization to convert agricultural and forestry wastes into functionalized hydrochar, showing highly efficient removal of Cr(VI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call