Abstract

Motion control is critical in mobile robot systems, which determines the reliability and accuracy of a robot. Due to model uncertainties and widespread external disturbances, a simple control strategy cannot match tracking accuracy with disturbance immunity, while a complex controller will consume excessive energy. For precise motion control with disturbance immunity and low energy consumption, a control method based on an enhanced reduced-order extended state observer (ERESOBC) is proposed to control the motor-wheels dynamic model of a differential driven mobile robot (DDMR). In this method, only unknown state error and negative disturbance are estimated by the enhanced reduced-order extended state observer (ERESO), which reduces the required energy of the observer. In addition, a simple state-feedback-feedforward controller is used to track the reference signal and compensate for negative disturbance. Through numerical simulation and application example, the tracking performance and disturbance rejection performance of DDMR are compared with the traditional control method based on enhanced extended state observer (EESOBC), and the results show the superiority of the ERESOBC method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.