Abstract

Electrochemical recovered ferric phosphate (FePO4) precipitates from hypophosphite-laden wastewater were shown to be an efficient method for phosphorus (P) recovery. However, the influence of chloride ions (Cl−) coexisting commonly in wastewater is not known for this treatment. Herein, a field-induced electro-Fenton coupled with anodic oxidation electrochemical system consisting of a Ti-RuO2 anode, an Fe inductive electrode and an activated carbon fiber (ACF) cathode, namely Ti-RuO2/Fe/ACF(NaCl) system, was established to recover phosphorus (P) as FePO4 from hypophosphite-laden wastewater in the presence of Cl−. This system enabled a hypophosphite (H2PO2−, 1.0 mM) removal ratio of ~100% and all P was recovered within 30 min at 5.0 V under the initial solution pH of 3.0. The Faradaic efficiency and energy consumption of P recovery achieved the maximum value (~94%) and the lowest value (~16 kW h kg−1 P), respectively. Reactive oxygen species including 1O2, FeIVO2+, •O2− and •OH contribute to convert H2PO2− to PO43−, which immediately formed FePO4 with the generated Fe3+ at the optimized conditions. Therein, the contribution of non-radical 1O2 was very considerable. This system exhibited good stability. The efficiency and cost for treatment of actual hypophosphite-laden wastewater were addressed to check its applicability for P recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.