Abstract
Zero-valent aluminum (ZVAl) is a promising reductant because of its relatively low redox potential, which can efficiently activate molecular oxygen to generate reactive oxygen species. However, its long-term performance is limited by the intrinsic dense oxide layer and the passivation effect of the accumulative Al-(hydr)oxide on its surface during the reaction. In this study, four clay minerals with different compositions were mixed with ZVAl by ball milling to obtain four composites of ZVAl and clay (ZVAl-Clay), which were used to degrade a high concentration of 4-chlorophenol (4-CP) under ambient conditions. The oxidation efficiencies of different ZVAl-Clays were strongly relevant to Fe contained in the clay minerals. The Fe-free ZVAl-Clay presented poor oxidation performance, whereas the reaction efficiencies of those ZVAl composites with Fe-bearing clays exhibited varying degrees of improvement. In comparison with the original ZVAl, the highest oxidation rate increased by 23 times, the maximum increased OH production was approximately 8 times, and the corresponding mineralization efficiency improved by 38.7%. However, the levels of improved oxidation performance of various ZVAl-Clays were not positively correlated with their actual total Fe contents, and their degradation efficiencies might also be affected by other physical and/or chemical properties of different clays. The synergistic mechanism revealed by various characterizations was that electron transfer might occur from ZVAl to the structural Fe(III) of the clay through the basal plane or edge of clays triggered by ball milling. Thus, the partially produced Fe(II) on the clay surface promoted the Fenton-like reaction to decompose H2O2 into OH for efficient oxidation of 4-CP. In short, the ZVAl composites with Fe-bearing clays deserved further exploration as potential materials for efficient degradation of organic matters in wastewater samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.