Abstract

Oxidative degradation of aquatic organic contaminants using zero-valent aluminum (ZVAl) in the presence of dissolved oxygen (O2) was investigated. The metal corrosion process in acidic conditions (pH < 4) was accompanied by electron transfer from ZVAl to O2, which led to the simultaneous generation of Al3+ and hydrogen peroxide (H2O2). The oxidation of 4-chlorophenol (4-CP), a model substrate, was initiated by the generation of hydroxyl radicals (HO*) via electron transfer from Al0 to H2O2. Degradation was initiated after an induction period of about 2 h, during which the native oxide layer was dissoluted. The HO*(-) mediated oxidation reaction was completely quenched by adding methanol as a radical scavenger. Systematic studies on the effects of ZVAl loading, pH, and surface oxide content revealed that the oxide layer dissolution controlled the Al0-mediated oxidation of 4-CP. The proposed process is similarly compared with the zero-valent iron (ZVI) system, but the ZVAl/O2 system showed a higher oxidation capacity compared with ZVI/O2 because of the stability of aquo-complexed Al3+ ions over a wider pH range. The degradation of phenol, nitrobenzene, and dichloroacetate was also successfully achieved with ZVAl. The present study proposes the ZVAl/O2 process as a viable method of oxidative water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.