Abstract

Integration of nanowires and nanoparticles of energetic materials into semiconducting structures is giving birth to “nanoenergetics-on-a-chip” technology. Understanding and controlling the reactions of nanoenergetic materials pose a theoretical challenge for combining quantum-mechanical accuracy with large scales to capture nanostructural effects. Recent developments in linear-scaling density functional theory have set a stage for first-principles molecular dynamics simulation of thermite reaction at an Al∕Fe2O3 interface. Here, we report the finding of a concerted metal-oxygen flip mechanism that enhances mass diffusion and reaction rate at the interface. This mechanism leads to two-stage reactions, which may explain recent experimental observation in thermite nanowire arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call