Abstract
The recent progress of linear-scaling or O(N) methods in density functional theory (DFT) is remarkable. Given this, we might expect that first-principles molecular dynamics (FPMD) simulations based on DFT could treat more realistic and complex systems using the O(N) technique. However, very few examples of O(N) FPMD simulations exist to date, and information on the accuracy and reliability of the simulations is very limited. In this paper, we show that efficient and robust O(N) FPMD simulations are now possible by the combination of the extended Lagrangian Born-Oppenheimer molecular dynamics method, which was recently proposed by Niklasson ( Phys. Rev. Lett. 2008 , 100 , 123004 ), and the density matrix method as an O(N) technique. Using our linear-scaling DFT code Conquest, we investigate the reliable calculation conditions for accurate O(N) FPMD and demonstrate that we are now able to do practical, reliable self-consistent FPMD simulations of a very large system containing 32768 atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.