Abstract

Chemical reactions are important in the evolution of low-temperature interstellar clouds, where the quantum tunnelling effect becomes significant. The F + para-H2 → HF + H reaction, which has a significant barrier of 1.8 kcal mol-1, is an important source of HF in interstellar clouds; however, the dynamics of this quantum-tunnelling-induced reactivity at low temperature is unknown. Here, we show that this quantum tunnelling is caused by a post-barrier resonance state. Quantum-state-resolved crossed-beam scattering measurements reveal that this resonance state has a collision energy of ~5 meV and a lifetime of ~80 fs, which are in excellent agreement with a recent anion photoelectron spectroscopic study. Accurate quantum reactive scattering calculations on the new iCSZ-LWAL potential energy surfaces provides a detailed explanation of the experimental results. The reaction rate for this system was also theoretically determined accurately at temperatures as low as 1 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.