Abstract

In this paper, we present new structures based on ring, conventional photonic crystal and hybrid PhC for enhanced Raman amplification. The structures consist of two separate entrances for the pump and signal. In this way, only pump is coupled into the ring and signal passes through the amplified pump without creating coupling noise. Using engineered nano holes filled with optofluidic materials in the signal and pump paths, we reduce pump and signal group velocity to improve the structure and achieve larger Raman gain and less dispersion. The time evolution and propagation of picosecond signal pulses and dispersion inside the device are analyzed and Raman gain, Raman bandwidth and bit rate are studied in one-ring and two-ring structures. To model Raman amplification in these structures, Maxwell equations are solved using finite difference time domain method considering optical nonlinear parameters like two photon absorption, free carrier absorption and Kerr effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.