Abstract

The development of portable, cost-effective, and straightforward DNA biosensors holds immense importance in various fields, including healthcare, environmental monitoring, and food safety. This study contributes to the objective by introducing an innovative approach for synthesizing carbon dots (Cdots) with high quantum yield (QY) and remarkable selectivity for Fe3+ ions. Utilizing o-phenylenediamine as a precursor, the study achieved a straightforward and environmentally friendly synthesis method, enabling the efficient detachment of metal ions from the Cdot surface upon introducing pyrophosphate (PPi). The presence of surface hydroxyl and amino groups facilitated specific Fe3+ recognition. Employing D-optimal response surface methodology, the study optimized Cdot synthesis parameters, identifying temperature and heating time as critical factors influencing QY. Statistical analysis confirmed the model's reliability, predicting maximum QY of 48.8 % with minimal deviation from experimental results. Characterization studies revealed the amorphous nature of Cdots through HR-TEM, XRD, and FTIR analysis. Furthermore, the proposed LAMP/PPi biosensing technique demonstrated higher sensitivity, specificity, and repeatability, with negligible interference from common anions and efficacy across varying pH levels. The limit of detection (LOD) of 0.079 (±0.01) μM and the detection range of 0.1 μM–2 mM underscore the biosensor's practical utility. This study highlights a promising direction for developing paper-based LAMP/PPi biosensors with potential diagnostics and environmental monitoring applications. Significantly, the biosensing technique is applicable to any DNA amplification method generating pyrophosphate (PPi) as a by-product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.