Abstract

BackgroundStyrene is a large-volume commodity petrochemical, which has been used in a wide range of polymer industry as the main building block for the construction of various functional polymers. Despite many efforts to produce styrene in microbial hosts, the production titers are still low and are not enough to meet the commercial production of styrene.ResultsPreviously, we developed a high l-phenylalanine producer (E. coli YHP05), and it was used as a main host for de novo synthesis of styrene. First, we introduced the co-expression system of phenylalanine-ammonia lyase (PAL) and ferulic acid decarboxylase (FDC) genes for the synthesis of styrene from l-phenylalanine. Then, to minimize cell toxicity and enhance the recovery of styrene, in situ product recovery (ISPR) with n-dodecane was employed, and culture medium with supplementation of complex sources was also optimized. As a result, 1.7 ± 0.1 g/L of styrene was produced in the flask cultures. Finally, fed-batch cultivations were performed in lab-scale bioreactor, and to minimize the loss of volatile styrene during the cultivation, three consecutive bottles containing n-dodecane were connected to the air outlet of bioreactor for gas-stripping. To conclude, the total titer of styrene was as high as 5.3 ± 0.2 g/L, which could be obtained at 60 h.ConclusionWe successfully engineered E. coli strain for the de novo production of styrene in both flask and fed-batch cultivation, and could achieve the highest titer for styrene in bacterial hosts reported till date. We believe that our efforts in strain engineering and ISPR strategy with organic solvent will provide a new insight for economic and industrial production of styrene in a biological platform.

Highlights

  • Styrene is a large-volume commodity petrochemical, which has been used in a wide range of polymer industry as the main building block for the construction of various functional polymers

  • McKenna et al [6] were successful in incorporating phenylalanine-ammonia lyase (PAL) from Arabidopsis thaliana and ferulic acid decarboxylase (FDC) from S. cerevisiae into a high l-phenylalanine producer strain (E. coli NST74) to demonstrate a styrene biosynthesis pathway in E. coli, where 260 mg/L of styrene was produced in flask cultures

  • Construction of styrene biosynthesis pathway in E. coli In E. coli, styrene can be synthesized from l-phenylalanine catalyzed by two enzymes: phenylalanine-ammonia lyase (PAL) and ferulic acid decarboxylase (FDC) (Fig. 1)

Read more

Summary

Introduction

Styrene is a large-volume commodity petrochemical, which has been used in a wide range of polymer industry as the main building block for the construction of various functional polymers. The natural production of styrene has been found in various hosts including microorganisms, such as Penicillium camemberti and certain specific plant species [6, 11]. Their extremely low productivities suggested the need for a suitable host for an economically feasible production. The titer reached only up to a maximum of 29 mg/L in flask cultivation Despite these efforts to increase the production titer of styrene in microbial hosts, the current titers are not high enough for the commercial production and it is necessary to develop more potential host and efficient bioprocess

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.