Abstract

This study presents a predefined-time control strategy for rigid spacecraft, employing dynamic predictive techniques to achieve robust and precise attitude tracking within predefined time constraints. Advanced predictive algorithms are used to effectively mitigate system uncertainties and environmental disturbances. The main contributions of this work are introducing adaptive global optimization for period updates, which relaxes the original restrictive conditions; ensuring easier parameter adjustments in predefined-time control, providing a nonconservative upper bound on system stability; and developing a continuous, robust control law through terminal sliding mode control and predictive methods. Extensive simulations confirm the control scheme reduces attitude tracking errors to less than 0.01 degrees at steady state, demonstrating the effectiveness of the proposed control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.