Abstract

Surface passivation technology plays an important role, especially in E-mode pHEMTs applications, and a new passivation technology has been proposed in this study. This novel benzocyclobutene (BCB) passivation layer takes advantage of the low dielectric permittivity (2.7) and a low loss tangent (0.0008). In this letter, we not only suppress the gate-to-drain leakage current but also improve the device power performance under a high input power swing by using a BCB passivation layer. The passivated 1.0 /spl mu/m-long gate pHEMTs exhibit a better off-state performance than the unpassivated ones. The maximum output power under a 2.4-GHz operation is 118 mW/mm, with a linear power gain of 11.1 dB and a power-added efficiency is 60%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.