Abstract

To sustainably produce biodegradable polyhydroxybutyrate (PHB), this study investigated effects of process and metabolic limiting factors during bioconversion of acid whey (AW) to PHB, offering economic and environmental advantages for dairy industry. Recombinant Escherichia coli LSBJ was used to achieve high PHB yields by utilizing both lactose and lactic acid as carbon source. Up to 85% PHB accumulation was achieved during growth on the synthetic AW. Growth on raw AW had the highest PHB yield of 4 g/L and a high substrate utilization efficiency (95%). Notably, ratios of lactate: lactose and C/N impacted metabolic flux and PHB yields. Maintaining the fermentation pH enhanced PHB production. Furthermore, additives of inorganic nitrogen sources, minerals and trace metals promoted PHB production from AW. The study improves the understanding of factors affecting utilization of AW and demonstrated the high PHB yields using recombinant E. coli that could be leveraged to design a sustainable process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.