Abstract

Polyhydroxybutyrate (PHB) is biodegradable and renewable and thus considered as a promising alternative to petroleum-based plastics. However, PHB production is costly due to expensive carbon sources for culturing PHB-accumulating microorganisms under sterile conditions. We discovered a hyper PHB-accumulating denitrifying bacterium, Zobellella denitrificans ZD1 (referred as strain ZD1 hereafter) capable of using non-sterile crude glycerol (a waste from biodiesel production) and nitrate to produce high PHB yield under saline conditions. Nevertheless, the underlying genetic mechanisms of PHB production in strain ZD1 have not been elucidated. In this study, we discovered a complete pathway of glycerol conversion to PHB, a novel PHB synthesis gene cluster, a salt-tolerant gene cluster, denitrifying genes, and an assimilatory nitrate reduction gene cluster in the ZD1 genome. Interestingly, the novel PHB synthesis gene cluster was found to be conserved among marine Gammaproteobacteria. Higher levels of PHB accumulation were linked to higher expression levels of the PHB synthesis gene cluster in ZD1 grown with glycerol and nitrate under saline conditions. Additionally, a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas type-I-E antiviral system was found in the ZD1 genome along with a long spacer list, in which most of the spacers belong to either double-stranded DNA viruses or unknown phages. The results of the genome analysis revealed strain ZD1 used the novel PHB gene cluster to produce PHB from non-sterile crude glycerol under saline conditions.

Highlights

  • IntroductionOur previous study reported that Zobellella denitrificans ZD1 (referred as strain ZD1 hereafter) can accumulate high contents of PHB from both sterile and non-sterile synthetic crude glycerol (containing fatty acids and salts) [7]

  • We have identified a complete PHB synthesis pathway from glycerol to PHB in the strain ZD1 genome

  • High PHB production and elevated expression of PHB synthesis genes in ZD1 grown with glycerol and nitrate suggested the important linkage of PHB synthesis genes and nitrogen source

Read more

Summary

Introduction

Our previous study reported that Zobellella denitrificans ZD1 (referred as strain ZD1 hereafter) can accumulate high contents of PHB from both sterile and non-sterile synthetic crude glycerol (containing fatty acids and salts) [7]. Strain ZD1 is a heterotrophic, gram-negative rod bacterium [8] isolated from a mangrove ecosystem. Along with another isolate Z. taiwanesis ZT1, strain ZD1 and Z. taiwanesis ZT1 are the first two members of the Zobellella genus belonging to the Gammaproteobacteria class. They are capable of using nitrite and/or nitrate as electron acceptors in their respiratory and fermentative metabolism [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call