Abstract

Additive manufacturing (AM) facilitates the creation of materials with unique microstructural features and distinctive phenomena as compared to conventional manufacturing methods. Among the various well-fabricated AM alloys, aluminum alloys garner substantial attention due to their extensive applications in the automotive and aerospace industries. In this work, an Al6xxx alloy is successfully fabricated with outstanding performance. A nucleation agent is introduced to diminish the susceptibility to cracking during the AM process, thereby inducing a heterogeneous microstructure in this alloy. However, the introduction of ultrafine grains induces plastic instability, evidenced by the presence of Lüders band. This work investigates the evolution of the Lüders band and the strategy to reduce their undesirable effect. The heterogeneity destabilizes the band propagation and thus deteriorates the ductility. Through a T6 heat treatment, the local Lüders strain decreases from 10.0% to 6.2%, leading to a substantial enhancement in plastic stability. With the increase in grain growth and the enlargement of coarse grain regions, the mismatch between the local and macroscopic Lüders strain disappears. Importantly, the strength and the thermal conductivity are concurrently increased. The findings demonstrate the significance of ensuring plastic stability to achieve improved strength-ductility trade-off in AM alloys with heterogeneous microstructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.