Abstract

Photocatalytic reforming of biomass-derived hydrocarbons and water has been confirmed as an efficient approach for hydrogen production. In this work, anatase TiO2 based Janus-type catalyst was synthesized by a selective surface modification method to realize Pickering interfacial catalytic hydrogen production through photoreforming of bio-derived biphasic system. The results showed that the Janus-type catalyst possessed a huge potential for promoting hydrogen production in biphasic system. Although the surface electrochemical hydrogen evolution property was examined to be slightly attenuated after surface modification, the as-prepared Janus-type TiO2 exhibited almost doubled photoreforming H2 yield at the emulsion interface than that of the bare TiO2 in conventional biphasic system, and over 10 times higher than that of the bare TiO2 in pure water. This excellent performance was mainly due to the exposed Janus-type anatase TiO2 at the interface offering the high accessibility to reactants with larger mass transfer area. The reaction rate was found to be associated with the concentration of Janus-type catalyst which could directly influence the size evolution of emulsion droplet. In cyclic reaction tests, the established Pickering interfacial catalytic hydrogen production system revealed that both emulsification performance and catalytic stability had a strong influence on the cyclic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.