Abstract

Production and storage of hydrogen from biomass component by using efficient catalysts, it can finely maintain the future energy of the world and reduce human dependence on fossil fuels. Hydrogen production mechanism via formic acid decomposition on the TiO2 anatase (101) and Pt–TiO2 surfaces in the solvent (water) and gaseous conditions performed by density functional theory (DFT) calculation. Regarding to the proposed routes, decomposition reaction of formic acid on TiO2 surface incline to be followed by second route in the water which is acceptable in terms of energy. Decomposition reaction of formic acid on Pt–TiO2 surface prefers to do it via first route (rotation around CO bond of formic acid) in solvent conditions. Furthermore, adsorption energy and geometric changes of formic acid on TiO2 anatase (101) and Pt–TiO2 surface in gaseous and solvent conditions were clearly studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call