Abstract
AbstractThe color conversion efficiency of thin polymeric layers embedding quantum dots (QDs) is limited by their negligible light scattering ability and by the insufficient absorption of the excitation photons. In this study, a route is presented to tackle these optical shortcomings by introducing a tailored network of micropores inside these hybrid films. This is achieved by exploiting the microcellular foaming approach which is rapid, cost effective and only makes use of a green solvent (supercritical carbon dioxide). With an appropriate combination of the applied pressure and temperature during foaming, and by using a proper film thickness, the photoluminescence (PL) intensity is enhanced by a factor of up to 6.6 compared to an equivalent but unfoamed hybrid film made of CdSe/ZnS QDs in a polymethyl methacrylate matrix. Spectroscopic measurements and ray tracing simulations reveal how the porous network assists UV/blue light absorption by the QDs and the subsequent outcoupling of the converted light. The approach improves the PL for various QD concentrations and can be easily scaled up and extended to other polymeric matrices as well as light converting materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have