Abstract

Photocatalytic reduction of carbon dioxide to produce methanol is a promising approach to restrain greenhouse gases emissions and mitigate energy shortage, which attracts extensive concerns in recent years. The optical fiber monolith reactor with solid glass balls for photocatalytic carbon dioxide reduction is proposed in this work to increase the product concentration, and the glass balls are transparent and coated with photocatalysts evenly to absorb light. The photocatalytic reduction of carbon dioxide in optical fiber monolith reactor is numerically investigated, by which the effects of glass ball number, location, circle and layer on the production are analyzed. The results show that in the single-circle and single-layer model, the outlet methanol concentration increases with increasing the ball number. The closer to the fiber and reactor inlet the balls keep, the higher the methanol production is. As the circle and layer numbers increase, the methanol concentration also increases. The outlet methanol average concentration of the optical fiber monolith reactor with 3-circle and 5-layer balls gets 11.43% higher than the case without glass balls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call