Abstract

Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS3/TiO2 photocatalysts based on TiO2 nanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed MoS3 with low crystallinity on the surface of TiO2 nanoplates. The as-synthesized MoS3/TiO2 photocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO2, the loading percentage of MoS3 and the crystalline phase of TiO2 have been investigated towards the photocatalytic performance. TiO2 nanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoS3 for photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.