Abstract

Fe-doped TiO2 with various levels of Fe (0.5, 1, 2, 3, and 5 wt. %) was made via impregnation, and the Fe-doped TiO2 catalysts were modified with g-C3N4. These materials were studied using FE-SEM, Uv-DRS, TEM, Raman, FT-IR, and XPS techniques. The results show that the fine dispersed Fe3+ and g-C3N4 expanded the photoresponse of titania into the visible region on the introduction of ferric ions and fine dispersion of g-C3N4 on TiO2. The hydrogen formation rate from solar light-induced photocatalysis can be greatly increased by coupling g-C3N4 with the above Fe-doped TiO2, and the 1 wt. % Fe-modified TiO2 with the g-C3N4 composite has high photoactivity and shows excellent photostability for hydrogen production by solar irradiation. The stable hydrogen evolution of 1 wt. % Fe-doped TiO2 with g-C3N4 is some 17 times higher than that found with unmodified TiO2. The results show that the photogenerated electrons of g-C3N4 can directionally migrate to Fe-doped TiO2 due to intimate interfacial contacts and synergism operating between Fe-doped TiO2 and g-C3N4 where photogenerated electrons and holes are efficiently spatially separated. This separation retards the charge recombination rate and improves photoactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call