Abstract

Wind energy is one of the most eminent renewable sources for the generation of power. The increasing enthusiasm toward the advancement of small-scale Darrieus type straight-bladed vertical axis wind turbines (SB-VAWTs) can offer a potential remedy for addressing power shortage and the unpredictability of climate conditions. These particular wind turbines provide distinct advantages over their counterparts due to their linear blade design and uncomplicated structure. However, enhancements are required in their aerodynamic efficiency and self-initiation capabilities. These challenges stem from using traditional straight blade configurations and symmetrical airfoils. By substituting these conventional elements with J-shaped straight blades and along with cambered airfoils, these issues can be effectively overcome. The current study aims to investigate the effect of J-shaped straight blades with a series of cambered airfoils to improve the aerodynamic performance and starting torque of small-scale Darrieus type SB-VAWTs. Therefore, experimental and numerical studies are conducted to analyze the J-shaped airfoil impact with various opening ratios systematically. The J-shaped blade profile is designed by eliminating some portion toward the trailing edge of a conventional airfoil. This analysis demonstrated that the J-shaped blade incorporating a cambered NACA 4418 airfoil outperforms its alternative cambered airfoil designs. The performance of SB-VAWT improves by about 25% by the J-shape of the cambered NACA 4418 airfoil with a 70% opening ratio. Moreover, the use of J-shaped airfoils enhances the self-starting torque of SB-VAWT compared to conventional airfoils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call