Abstract

A novel visible-light-sensitive ZnVFeO4 photocatalyst has been fabricated by the precipitation method at different pH values for the enhanced photocatalytic degradation of malachite green (MG) dye as a representative pollutant under visible light irradiation at neutral pH conditions. The structure and optical characteristics of the prepared photocatalysts were investigated by XRD, FTIR, N2 adsorption–desorption, TEM, diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) analyses. In addition, the photocatalytic activity of ZnVFeO4 photocatalysts superior the efficiency to be more than that of the mono and bi-metal oxides of iron and iron zinc oxides, respectively. The best sample, ZnVFeO4 at pH 3, significantly enhances the degradation rate under visible light to be 12.7 × 10−3 min−1 and can retain a stable photodegradation efficiency of 90.1% after five cycles. The effect of the catalyst dose and the initial dye concentration on the photodegradation process were studied. This promising behavior under visible light may be attributed to the low bandgap and the decreased electron–hole recombination rate of the ZnVFeO4 heterostructures. The scavenger experiment confirmed that the hydroxyl radicals induced the MG photodegradation process effectively. Hence, the ZnVFeO4 is a reliable visible-light-responsive heterostructure photocatalyst with excellent potential for the photodegradation of organic pollutants in wastewater treatment.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11356-022-20745-6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call