Abstract

Quantum metrology aims at delivering new quantum-mechanical improvement to technologies of parameter estimations with precision bounded by the quantum Cramér-Rao bound. The currently used quantum Cramér-Rao bound was established with measurements of observables restricted to be Hermitian. This constrains the bound and limits the precision of parameter estimation. In this paper, we lift the constraint and derive a previously unknown quantum Cramér-Rao bound. We find that the new bound can reach arbitrary small value with mixed states and it breaks the Heisenberg limit in some cases. We construct a setup to measure non-Hermitian operators and discuss the saturation of the present bound. Two examples—the phase estimation with Greenberger-Horne-Zeilinger states of trapped ions and the adiabatic quantum parameter estimation with the nuclear magnetic resonance—are employed to demonstrate the theory. The present study might open a new research direction—non-Hermitian quantum metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.