Abstract

In cardiac myocytes in vitro, hydrogen peroxide induces autophagic cell death and necroptosis. Oxidative stress, myocyte autophagy and necroptosis coexist in heart failure (HF). In this study, we tested the hypothesis that excessive oxidative stress mediates pathological autophagy and necroptosis in myocytes in pressure overload-induced HF. HF was produced by chronic pressure overload induced by abdominal aortic constriction (AAC) in rats. Rats with AAC or sham operation were randomised to orally receive an antioxidant N-acetylcysteine (NAC) or placebo for 4weeks. Echocardiography was performed for the assessments of left ventricular (LV) structure and function. AAC rats exhibited decreased LV fractional shortening (FS) at 4weeks after surgery. NAC treatment attenuated decreased LV FS in AAC rats. In AAC rats, myocardial level of 8-hydroxydeoxyguanosine assessed by immunohistochemical staining, indicative of oxidative stress, was increased, LC3 II protein, a marker of autophagy, Beclin1 protein and Atg4b, Atg5, Atg7 and Atg12mRNA expression were markedly increased, RIP1, RIP3 and MLKL expression, indicative of necroptosis, was increased, and all of the alterations in AAC rats were prevented by the NAC treatment. NAC treatment also attenuated myocyte cross-sectional area and myocardial fibrosis in AAC rats. In conclusion, NAC treatment prevented the increases in oxidative stress, myocyte autophagy and necroptosis and the decrease in LV systolic function in pressure overload-induced HF. These findings suggest that enhanced oxidative stress mediates pathological autophagy and necroptosis in myocytes, leading to LV systolic dysfunction, and antioxidants may be of value to prevent HF through the inhibition of excessive autophagy and necroptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call