Abstract
Although permanganate activation by sodium sulfite (Mn(VII)/Na2SO3) has shown great potential for rapid abatement of organic contaminants, the limited reactivity under alkaline conditions and undesirable Mn residual may prevent its widespread application. To solve these challenges, calcium sulfite (CaSO3) was employed as a slow-release source of SO32−/HSO3− (S(IV)) to activate Mn(VII) in this study. It was found that the application of CaSO3 solid could extend the effective working pH range of Mn(VII)/S(IV) from ≤7.0 to ≤9.0. Moreover, due to the enhanced precipitation of MnO2 with the presence of Ca2+, very low Mn residual (<0.05 mg/L) was achieved in Mn(VII)/CaSO3 system. Mn(VII)/CaSO3 system is a unique two-stage oxidation process in terms of reaction kinetics and reactive oxidants. Specifically, Mn(VII) was rapidly consumed and reactive Mn intermediates (e.g., Mn(VI), Mn(V)), SO4•−, and HO• were produced in the first stage. However, the second stage was governed by the interaction between MnO2 and S(IV), with SO4•− and HO• serving as the dominant reactive oxidants. Taking advantage of an automatic titrator, excess S(IV) was found to greatly quench the generated radicals, whereas it did not cause a significant consumption of reactive Mn species. All these results improved our understanding of the Mn(VII)/S(IV) process and could thus facilitate its application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.