Abstract
As a non-invasive biophysical therapy, electromagnetic fields (EMF) have been widely used to promote the healing of fractures. In the present study, hydroxyapatite/collagen I (HAC) loaded with rabbit bone marrow mesenchymal stem cells (MSCs) were cultured in a dynamic perfusion bioreactor and exposed to EMF of 15 Hz/1mT. Osteogenic differentiation of the seeded cells was analyzed through the evaluation of ALP activity and osteogenesis-related genes expression in vitro. The in vivo osteogenesis efficacy of the cell laden HAC constructs treated with/without EMF was evaluated through a rabbit femur condyle defect model. The results showed that EMF of 15 Hz/1mT could enhance the osteogenic differentiation of the cells seeded on HAC scaffold. Furthermore, the in vivo experiments demonstrated that EMF exposure could promote bone regeneration within the defect and bone integration between the graft and host bone. Taking together, the MSCs seeded HAC scaffold combined with EMF exposure could be a promising approach for bone tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of materials science. Materials in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.