Abstract
The aim of this study was to improve the solubility, oral bioavailability, and anti-gastroesophageal reflux activity of curcumin (CM) by preparing two CM-loaded, novel, binary mixed micelles (CM-M). The two CM-M were prepared by ethanol thin-film hydration method. One (CM-T) was prepared using D-alpha-tocopheryl polyethylene glycol 1000 succinate and Solutol®HS15, and the other (CM-F) was prepared using Pluronic®F127 and Solutol®HS15. The entrapment efficiency and drug loading of CM-T were 83.61 ± 0.54% and 2.20 ± 0.65%, respectively, which were lower than those of CM-F (88.66 ± 0.12% and 1.47 ± 0.26%, respectively). TEM results demonstrated that CM-T and CM-F were homogeneous and spherical. The permeability of CM delivered via CM-T and CM-F was enhanced across a Caco-2 cell monolayer, and CM-T and CM-F showed a 5.24- and 4.76-fold increase in relative oral bioavailability, respectively compared with free CM. In addition, the in vivo anti-gastroesophageal reflux study showed that CM-T and CM-F achieved higher anti-gastroesophageal reflux efficacy compared with free CM. Collectively, these findings were indicative of an oral micelle formulation of CM with increased solubility, oral bioavailability, and anti-gastroesophageal reflux activity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have